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Abstract – This paper presents an intelligent approach to identify and adapt the rotor resistance for
an indirect vector controlled induction motor drive. This command is affected by rotor resistance; the
variation of this parameter could distort the decoupling between flux and torque and, consequently, lead to
deterioration of drive performance. To overcome this problem, a fuzzy estimator is provided to identify the
real value of rotor resistance in order to obtain a vector control optimal. Then we propose a fuzzy adaptive
control strategy fits into the learning methods context by modifying the consequences of fuzzy estimator.
Regarding the learning algorithm, our solution envisages the use of a fuzzy inverse model, combined with
a mechanism that acts based on estimator rules by modifying the consequents according to a certain
criterion, so as to increase the system robustness, and avoid unnecessary oscillation in the control signal.
The suggested rotor resistance identification approach has been validated by simulation study.

Key words: Adaptive control / fuzzy logic / induction motor / learning system / rotor resistance

1 Introduction

In indirect field control (IFOC) the rotor resistance
is an important parameter which is involved in rotor flux
estimation and the control law to compensate for the non-
linearity of system [1]. However, this parameter varies
with machine temperature. In addition it was demon-
strated that a poor estimate of this parameter affects the
regulation (pursuit of flux trajectory and rotor speed) and
even it can introduce oscillations [1]. This difficulty has
been the main source of our motivation for this research.
Several authors have contributed to estimating rotor re-
sistance [2–6]; in which one proposes a new self-learning
adaptive fuzzy controller to identify the rotor resistance.

Fuzzy logic control or fuzzy control is a nonlinear
control method first proposed in 1965 by Dr. Zadeh [2].
It controls systems heuristically using a knowledge base
specified by the designer, hence imitating human logic in
order to perform control actions. The biggest advantage
of this controller is its ability to deal with systems that
are uncertain (fuzzy) due to complexity, incompleteness,
disturbances, etc., which are difficult to model using con-
ventional controllers [7, 8].

Each classical fuzzy logic controller contains a fuzzi-
fier, a rule base, a fuzzy inference engine and a defuzzifier.
There are many alternatives to choose from during the de-
sign process for the membership function type associated
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with the input and output fuzzy sets, the fuzzy inference
type, the T-Norm operator, the S-Norm operator and the
defuzzifier type [8, 9]. However once the choice is made,
it is final. All the calculation methods as well as the pa-
rameters are fixed during real time operation.

Adaptive fuzzy system is implemented in the frame-
work of adaptive network architecture and equipped with
a training (adaptation) algorithm with supervised learn-
ing, data are presented to the network input and the
latter computes and produces outputs. The differences
between these outputs and the desired outputs form er-
rors which are corrected using the back-propagation al-
gorithm, by applying this step several times, the error
tends to decrease and the network provides a better
prediction [10–12].

Our adaptation strategy fits into the learning meth-
ods context by modifying consequences of the fuzzy es-
timator [13–15]. This choice is inspired by the perfor-
mance of these methods which are, also, very intuitive.
This class of strategies is derived from the Mamdani [16]
work where the concept of self-organized control has been
developed. As well we will further study this category of
fuzzy adaptation methods, and propose a solution to the
problems detected in existing algorithms. In this way, we
hope able to maximum exploit the characteristics of adap-
tive strategy. Regarding the learning algorithm, our solu-
tion envisages the use of a fuzzy inverse model, combined
with a mechanism that acts based on estimator rules by
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Abbreviations and symbols

IFOC Indirect Field Oriented Control

DFOC Direct Field Oriented Control

FOC Field Oriented Control

FLE Fuzzy Logic Estimator

FRRE Fuzzy Rotor Resistance Estimator

AFSLRRE Adaptive Fuzzy Self-Learning based Rotor Resistance Estimator

vsd, vsq Stator voltages in d − q axes [V]

isd, isq Stator currents in d-q axes [A]

ird, irq Rotor currents in d-q axes [A]

λrd, λrq Rotor flux components in d-q axes [Wb]

Rs, Rr Stator and rotor resistances [Ω]

Lm, Ls, Lr Mutual, stator, and rotor inductances [H]

Te, Tl Electromagnetic torque, mechanical loads [N.m]

ωe, ωr, ωsl Synchronous, rotor, and slip frequencies [rad/s]

θe, θr, θsl Synchronous, rotor, and slip angles [rad]

f Damping coefficient [N.m.s]

τr Rotor time constant [s]

J Inertia moment [kg.m2]

np Number of pole pairs

Pn Rated power [kW]

R est Estimated rotor resistance

Φ, Φact, Φest, Φm Function , actual function, estimation function, and function of reference model output

μ(.) Membership function

EΦ, ΔEΦ, ΔRr Error function, error change function, and rotor resistance change

EΦm, ΔEΦm, ΔRr2 Error function, error change function, and rotor resistance change

in the output variable adjustment mechanism

εΦ, ΔεΦ, Δrr Error function normalized, error change function normalized, and rotor resistance change normalized

εΦm, ΔεΦm, Δrr2 Error function normalized, error change function normalized, and rotor resistance change normalized

in the output variable adjustment mechanism

GE , GΔE , GΔr Gain error, gain error change, and gain output variable change

GEm, GΔEm, GΔr2 Gain error, gain error change, and gain output variable change in the output variable

adjustment mechanism

Ft Fitness function

Ci Consequent fuzzy sets of output

z−1 Unit delay

s Laplace variable

modifying the consequents, according to a certain crite-
rion, so as to increase the system robustness, and avoid
unnecessary oscillation in the control signal. Adaptation
strategy must guarantee high rotor resistance estimation.
On the other hand, it is desirable that the adaptation law
can be obtained from a simplified model of induction ma-
chine and the electric actuator. From standpoint of topol-
ogy control, we propose a fuzzy estimator placed on the
main chain of control loop, and a fuzzy adaptation mech-
anism that makes decisions based on a reference model,
in order to modify the estimator base rules.

This paper is organized as follows: the principle of in-
direct field oriented control is presented in second section,
the structure of fuzzy logic rotor resistance estimator is
explained in third section, the design of adaptive fuzzy
self-learning based rotor resistance estimator is developed

in section four; the fifth section is devoted to illustrate the
simulation performance of this control strategy, finally,
section six presents our conclusions.

2 Indirect field oriented control

The idea of FOC is to assume an axis rotating with
synchronous frequency (i.e. rotate at same frequency of
rotating field). Then by alignment of flux vector along
the d-axis of synchronously rotating reference frame the
other flux component will be zero. Hence, if flux is kept
constant (λrd) then torque will be proportional to the
q-axis current component (iq). Figure 1 shows the vector
diagram for indirect field oriented control.
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Fig. 1. Vector diagram for indirect field oriented control.

At any instant, d electrical axis is in angular position
θe relative to α axis. The angle θe is the result of sum of
both rotor angular and slip angular positions, as follows:{

θe = θr + θsl

ωet = ωrt + ωslt = (ωr + ωsl)t
(1)

The rotor dynamics are given by following equations:

dλr

dt
=

Lm

τr
isd − 1

τr
λr (2)

dωr

dt
=

3n2
pLm

2JLr
λrisq − f

J
ωr − np

J
Tl (3)

Te =
3npLmλr

2Lr
isq (4)

θe =
∫

ωedt =
∫ (

ωr +
RrLmisq

Lrλr

)
dt (5)

The rotor flux magnitude is related to the d-axis stator
current by a first-order differential equation; thus, it can
be controlled by controlling the direct axis stator current.
Under steady-state operation rotor flux is constant, so
equation (2) becomes:

λr = Lmisd (6)

Indirect vector control can be calculated as follow:

i∗sd =
λ∗

r

Lm
(7)

i∗sq =
2LrT

∗
e

3npLmλ∗
r

(8)

ω∗
sl =

RrLmi∗sq

Lrλ∗
r

(9)

θ∗e =
∫

ω∗
edt =

∫
(ωr + ω∗

sl)dt (10)

3 Fuzzy rotor resistance estimator (FRRE)

The estimator input variables should wear explicitly
or implicitly information related to the resistance varia-
tion [2]. We find that torque could be the candidate. We
can estimate actual torque from stator flux. This method

is simple but it is not recommended for low-speed oper-
ation since in this region it is very difficult to estimate
exactly the stator flux [17,18].

We will use a function Φ, which is a modification of
function used in equation (3):

Φ =
1
ωe

(
iqs

dλdr

dt
− ids

dλqr

dt

)
(11)

As the resistance variation with temperature is very slow,
we can estimate in steady state. We can demonstrate that
for steady state the function Φ can be calculated as fol-
lows:

Φ = −idsλdr = −idsλ̂dr = Φest (12)

where λ̂dr is the estimated flux of d-axis.
The actual value of function Φ is calculated:

Φact =
Lr

Lm

[
1
ωe

(vdsiqs − vqsids) + Lsσ(i2ds + i2qs)
]

(13)

In equation (13) the function Φ is calculated from stator
voltage and current. The rotor voltage will be available
to our estimation algorithm. Figure 2 shows the configu-
ration of rotor resistance estimation. The functions Φest

and Φact are first calculated.
The error between Φest and Φact and its derivation are

the estimator inputs ΔEΦ(k), they are then calculated as
follows:

EΦ(k) = Φest(k) − Φact(k) (14)
ΔEΦ(k) = EΦ(k) − EΦ(k − 1) (15)

The internal structure of estimator involves three steps:
fuzzification, inference and defuzzification. The signals
εΦ(k) and ΔεΦ(k) are normalized and deducted from the
signals EΦ(k) and ΔEΦ(k) by multiplying by factor GE

and GΔE .
Triangular shaped membership functions, Z-shaped

membership functions, and S-shaped membership func-
tions were used for all inputs and outputs of the fuzzy
controller. The membership functions are uniformly dis-
tributed over the inputs and outputs dynamic range
(Fig. 3). The rule-based fuzzy estimator is built based on
process information. The basic structure of such a rule-
base is shown in Table 1.

The ith rule Ri can be expressed as:

Ri : if εΦ is Ai, and ΔεΦ is Bi,

then Δrr is Ni (16)

where Ai and Bi denote the fuzzy subsets and Ni is a
fuzzy singleton set.

The inference method used in this paper is Mamdani’s
procedure based on min-max decision [11]. The firing
strength χi, for ith rule is given by:

χi = min (μAi(εΦ), μBi(ΔεΦ)) (17)

By fuzzy reasoning, Mamdani’s minimum procedure
gives:

μ′
Ni(Δrr) = min (χi, μNi(Δrr)) (18)
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Fig. 2. Structure of the fuzzy rotor resistance estimator.

Table 1. Rule base for fuzzy rotor resistance identification.

ΔεΦ

NB NM NS Z PS PM PB

εΦ

NB NB NM NM NS NS NS Z
NM NM NM NS NS NS Z PS
NS NM NM NS NS Z PS PM
Z NB NM NS Z PS PM PM
PS NS NS Z PS PS PM PM
PM NS Z PS PS PS PM PM
PB Z PS PS PM PM PB PB

where μA, μB, and μN are membership functions of
sets A, B, and N of the variables εΦ, ΔεΦ, and Δrr ,
respectively.

Thus, the membership function μN of the output n is
given by:

μN (Δrr) =
49

max
i=1

(
μ

′
Ni

(Δrr)
)

(19)

The rules table contains 49 rules (7 × 7) as shown in
Table 1.

The estimated value of the resistance increment is ob-
tained by multiplying the estimator output Δrr(k) by the
gain GΔr. Resistance is finally integration increment:

Rr est(k) = Rr(k − 1) + GΔr.Δrr(k) (20)

Note that the initial value of the resistance Rr is its nom-
inal value.

This resistance is estimated to be used in indirect vec-
tor control algorithm to ensure optimal performance.

The fuzzy sets are characterized by standard desig-
nations: NB (negative big), NM (negative medium), NS
(negative small), Z (zero), PS (positive small), PM (pos-
itive medium) and PB (positive big).

As the time constant of resistance variation as a func-
tion of temperature is much greater than motor electric
time constant, we can estimate the resistance in steady
state, where there is no load variation or change con-
trol signal. This ensures that signal variations EΦ(k) and
ΔEΦ(k) are caused by Rr variation only.

Fig. 3. Input and output membership functions; (a) εΦ and
ΔεΦ, (b) Δrr.

4 Adaptive fuzzy self-learning based rotor
resistance estimator (AFSLRRE)

The structure of fuzzy model reference control is
shown in Figure 4. In this control scheme the system (the
plant together with the controller) is asked to follow cer-
tain performances given by a reference model. We define
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Fig. 4. Block diagram of a new adaptive fuzzy self learning for rotor resistance estimator.

the pursuit error and its variation:

EΦm(k) = Φm(k) − Φact(k) (21)
ΔEΦm(k) = EΦm(k) − EΦm(k − 1) (22)

These input variables are processed by adaptation system
using fuzzy rules to produce a signal adaptation ΔRr2

which is added to the output of FLE direct:

ΔRr(k) = ΔRr1(k) + ΔRr2(k) (23)

Estimated resistance is obtained by integrating the signal:

Rr est(k) = Rr est(k − 1) + (ΔRr1(k) + ΔRr2(k)) (24)

Normally, the reference model is a linear 1st or 2nd or-
der system. In this work a 2nd order system is used as a
reference model given by:

Φact(s)
Φest(s)

=
ω2

n

s2 + 2ξωn + ω2
n

(25)

where ωn is the desired natural frequency and ξ is the
desired damping ratio.

It is possible to select the reference model with a
higher order to match a process of higher dynamics. How-
ever, it is easier to describe the desired performance using
a 2nd order system by selecting both ωn and ξ.

The adaptation mechanism is responsible for forming
the rules at the rule-base of fuzzy estimator. These rules
describe the non-linear control surface that compensates
and linearizes the overall system to match the reference
model. It is also responsible of adapting the control sur-
face to compensate according to the process varying pa-
rameters. The inputs of the main fuzzy controller are as
equations (21) and (22). Uniformly distributed triangle
membership functions are used for this work for the con-
troller inputs and output for the main fuzzy controller.
We choose min-max inference method; the defuzzification
process employs the center of gravity method. The struc-
ture of the rule-base is identical to the one used for the
main fuzzy controller in the FRRE for simplicity and is
shown in Table 1. If more information about the process
is available it is possible to describe it in the rule-base of
the fuzzy controller.

The objective of the adaptation loop is to minimize a
cost function capable of “measuring” the performance of
system:

Ft(k) = ρEΦ

E2
Φm(k)

2
+ ρΔEΦ

ΔE2
Φm(k)
2

, ρEΦ , ρΔEΦ � 0

(26)
To minimize the cost function Ft, must change the con-
sequent in the direction of the negative gradient of Ft. It
should be noted, however, that only consequent rules cor-
responding active will be affected, i.e., the rules which the
activation degree is different from zero. The parameters
updating is performed according to the expression:

Ci(k)new = Ci(k)old + ΔCi(k) (27)

In the learning process, a certain delay is considered, so
that the control signal ΔRr will have a dominant effect
that after the next p calculation steps, where p ≥ n.
According to the gradient method, consequent variations
will be defined as:

ΔCi(k) ∝ −∂Ft(k + p)
∂Ci(k)

= −∂Ft(k + p)
∂ΔRr(k)

∂ΔRr(k)
∂Ci(k)

(28)

Using equations (21), (22) and (26), we obtain:

∂Ft(k + p)
∂ΔRr(k)

= −ρEΦEΦm(k + p)
∂Φact(k + p)

∂ΔRr(k)

− ρΔEΦΔEΦm(k + p)
∂ (Φact(k + p) − Φact(k + p − 1))

∂ΔRr(k)
(29)

However,

u∗ =

N∑
i=1

μici

N∑
i=1

μi

, u = Kuu∗ (30)

After equation (30)

∂ΔRr(k)
∂Ci(k)

= Ku
μi

N∑
l=1

μi

(31)

204-page 5



www.manaraa.com

M.R. Douiri and M. Cherkaoui: Mechanics & Industry 16, 204 (2015)

Thus, equation (28) becomes:

ΔCi(k) ∝
[
ρEΦEΦm(k + p)

∂Φact(k + p)
∂ΔRr(k)

+ρΔEΦΔEΦm(k + p)
∂ (Φact(k + p) − Φact(k + p − 1))

∂ΔRr(k)

]

× Ku
μi

N∑
l=1

μl

(32)

The partial derivatives in equation (33) can be expressed
by positive constants, provided they are positive at least
not from the future p steps. The delay of learning p is a
project parameter, determined by taking into account the
process order and possible unstable zeros. In this way, the
partial derivatives will be included in the learning gains,
and the approximation of equation (32) is written as:

ΔCi(k) = (δEΦEΦm(k + p)

+δΔEΦΔEΦm(k + p))Ku
μi

N∑
l=1

μl

(33)

Given the foregoing, the learning algorithm is based, es-
sentially on an iterative procedure offline. Defining ref-
erence signals of interest in learning, the iteration loop
is executed until the corrector learns to act on the pro-
cess, so that the pursuit of objectives is achieved. Figure 4
shows a block diagram of robust learning fuzzy rotor re-
sistance estimator.

5 Numerical results

In order to test the validity of the new proposed ap-
proach algorithm, a numerical analysis is carried out,
which has been simulated using the MATLAB/Slmulink
environment. The induction motor parameters are listed
as follows:

Pn = 3 kW, Vn = 230 V, Rs = 2.89 Ω, Rr = 2.39 Ω,
Ls = 0.225 H, Lr = 0.220 H, Lm = 0.214 H, J =
0.2 kg.m2, np = 2.

The rotor resistance is changed abruptly during steady
state operation of the drive. Its value is increased from
the nominal value of 2.39 Ω (Rr = 100%Rr,n) to 3.585 Ω
(Rr = 150%Rr,n) at 0.2 s, and then decreased to 2.987 Ω
(Rr = 125%Rr,n) at 0.4 s, and then decreased to 1.195
(Rr = 50%Rr,n) Ω at 0.6 s.

Figures 5a and 5a′ present the estimation and error
estimation results of rotor resistance using FRRE and
AFSLRRE. These two figures show a good operation of
the AFSLRRE which does not depend, again, the initial
value of rotor resistance chosen in the algorithm. This
is very important since in reality we do not know the
exact value of resistance when the estimation algorithm
starts. The convergence of this method is thus confirmed.
In reality, the actual rotor resistance varies much more
slowly, this means that the estimated rotor resistance can
better monitor the actual rotor resistance.

Figure 5b shows the speed response of both tech-
niques, when the rotor resistance changes abruptly. The
rotor speed with AFSLRRE strategy drops to 199.9 rad/s
at Rr = 150%Rr,n and rises to 200.1 rad/s at at Rr =
125%Rr,n and 200.2 rad/s at Rr = 50%Rr,n and then is
adjusted back to its demanded value in 0.8 ms, 0.6 ms and
0.9 ms respectively, with a steady state error of 0.003%,
0.002% and 0.005% respectively. while the FRRE strat-
egy drops to 197.3 rad/s at Rr = 150%Rr,n and rises
to 202.7 rad/s at Rr = 125%Rr,n and 202.9 rad/s at
Rr = 50%Rr,n and then is adjusted back to its demanded
value in 0.05 s, 0.03 s, and 0.06 s respectively, with a
steady state error of 0.02%, 0.01% and 0.05%, respec-
tively. AFSLRRE shows more robustness against rotor
resistance variation as well as high disturbance rejection
capability compared to FRRE.

The curves of flux and torque (Figs. 5c and 5d) remain
at their respective set-points despite the disturbance of
100%, 150%, 125% and 50% applied to the rotor resis-
tance. This proves that the adaptation process of this pa-
rameter is effectively realized and that decoupling is main-
tained. Indexical variations were used here in order to
verify the dynamic performance estimation scheme. How-
ever, in practice the rotor resistance varies exponentially
with the motor heating. From Table 2, we have summa-
rized the simulation results under the effect of the rotor
resistance variations.

We can therefore observe the little operations involved
in this estimator, which would result in an execution time
fairly rapid especially when these operations are imple-
mented on processors optimized for calculations such as
is the case of digital signal processors (Tab. 3).

By comparing the results, one can say that the AF-
SLRRE provides excellent dynamic performance to an in-
duction motor drive than the FRRE that appears in the
literature. Insensitivity to the drive parameter variations
and working conditions can be thus obtained.

6 Conclusion

The expected results of this research were primarily to
improve the drive performance addressed by conventional
methods of indirect rotor flux orientation. This improve-
ment should be achieved by developing a new strategy
indirect more robust with respect to the parameter vari-
ation. The basic idea of this new control structure is the
online correction of rotor resistance variation to main-
tain the decoupling controller in perfect agreement with
the actual conditions of motor operation. The topology
control is constituted by a fuzzy estimator whose rule
base is synthesized by the adaptation mechanism. We
have for goal to attack the problem of modification of
consequents fuzzy estimator, so that the algorithm adap-
tation and updating of these parameters has a regulatory
mechanism to avoid the generation of not bounded values.
Rule base will be synthesized and coherent with the ob-
jectives solicited control. Taking into account the results
obtained by simulation, we can affirm that AFSLRRE
has better dynamic performance than FRRE presented
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Fig. 5. AFSLRRE compared to FRRE. (a) rotor resistance estimation; (a′) rotor resistance estimation error; (b) rotor speed;
(c) electromagnetic torque; (d) flux module.

Table 2. Response of induction motor under different approaches proposed.

Methods Errors Rr = 100%Rr,n Rr = 150%Rr,n Rr = 125%Rr,n Rr = 50%Rr,n

AFSLRRE

Rotor resistance error 0.01% 0.03% 0.02% 0.05%

Rotor speed error 0.002% 0.003% 0.005% 0.009%

Flux module error 0.12% 0.12% 0.12% 0.12%

Electromagnetic torque error 1.22% 1.33% 1.31% 1.34%

FRRE

Rotor resistance error 0.23% 0.11% 0.23% 0.31%

Rotor speed error 0.01% 0.02% 0.01% 0.05%

Flux module error 0.22% 0.22% 0.22% 0.22%

Electromagnetic torque error 2.2% 2.5% 2.3% 2.9%
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Table 3. The comparison of the computation time for both
methods.

Methods Execution time in Matlab
AFSLRRE 6.812 min

FRRE 14.339 min

in literature. The optimal control vector is then obtained
and the torque/current is kept at the maximum value
corresponding to a given load torque.
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